Short communication

Is cannabis use associated with an increased risk of onset and persistence of alcohol use disorders? A three-year prospective study among adults in the United States

Andrea H. Weinberger a,b, Jonathan Platt c, Renee D. Goodwin c,d,*

a Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY 10461, USA
b Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
c Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
d Department of Psychology, Queens College and The Graduate Center, City University of New York (CUNY), 65-30 Kissena Boulevard, Queens, NY 11376, USA

A R T I C L E I N F O

Article history:
Received 22 October 2015
Revised in revised form 2 January 2016
Accepted 3 January 2016
Available online 11 February 2016

Keywords: Alcohol use disorders
Cannabis
Epidemiology
Comorbidity

A B S T R A C T

Background: The relationship between cannabis use and alcohol use disorders (AUDs) over time remains unclear. The current study used longitudinal data from adults in the United States (U.S.) to investigate the association between cannabis use and risk of onset and persistence of AUDs three years later.

Methods: The study used data from respondents who completed both waves of the National Epidemiologic Study of Alcohol Use and Related Disorders (NESARC; Wave 1, 2001–2001; Wave 2, 2004–2005) and for whom the age of first cannabis use preceded the age of any AUD. Incident AUDs were examined among respondents with no lifetime AUD diagnosis at Wave 1 (n = 27,461). Persistent AUDs were examined among respondents with a lifetime AUD diagnosis at Wave 1 (n = 2,121).

Results: Among adults with no history of AUD, cannabis use at Wave 1 was associated with increased incidence of an AUD three years later relative to no cannabis use (Odds Ratio (OR) = 5.43; 95% Confidence Interval (CI) = 4.54–6.49). Among adults with a history of AUD, cannabis use at Wave 1 was associated with increased likelihood of AUD persistence three years later relative to no cannabis use (OR = 1.74; 95% CI = 1.56–1.95). These relationships remained significant after controlling for demographics, psychiatric disorders, and other substance use disorders.

Conclusions: Cannabis use is associated with increased risk of AUD onset and persistence over the course of three years among U.S. adults. Community-based and clinical programs aimed at preventing or treating problematic alcohol use may benefit from integrating information about cannabis use in order to improve outcomes.

© 2016 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Alcohol use-related disease and accidents are one of the leading causes of death in the U.S. (CDC, 2004; Stahre et al., 2014). For adults, there is a significant association between alcohol and cannabis use (e.g., Butterworth et al., 2014; Hyggen and Hammer, 2014) and use of alcohol and cannabis, compared to alcohol alone, is associated with heavier alcohol consumption and greater negative alcohol-related consequences (e.g., Hyggen and Hammer, 2014; Midanik et al., 2007; Subbaraman and Kerr, 2015). Less is known about the association between cannabis use and alcohol use disorders (AUDs). In a study using Wave 1 data from the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC), cannabis dependence was significantly associated with a reduced likelihood of remission from alcohol dependence in univariate analyses (HR = 0.55, 95% CI = 0.32, 0.94), but this relationship was no longer significant in multivariate analyses (HR = 0.64, 95% CI = 0.37–1.13; Lopez-Quintero et al., 2011). It is not yet clear how cannabis use may be related to the onset and persistence of AUDs over time. Given the relationship of cannabis use to alcohol-related problems, it is important to gain a better understanding these potential relationships.

The current study used longitudinal data from a representative sample of U.S. adults to examine the association between cannabis use and the risk of onset and persistence of AUDs. It was expected
Table 1

Demographic frequencies for the full sample (n = 29,582) and frequencies of Wave 1 cannabis use and Wave 2 alcohol use disorders among participants with and without an alcohol use disorder diagnosis at Wave 1 by demographics.

<table>
<thead>
<tr>
<th>Demographic variable</th>
<th>Total (n; %)</th>
<th>No Wave 1 AUD (n = 27,461)</th>
<th>Wave 1 AUD (n = 2,121)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n; %)</td>
<td>Wave 1 PY cannabis use p</td>
<td>Wave 2 alcohol disorder p</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>12050</td>
<td>46 (0.96) <.0001</td>
<td>377 3.31 <.0001</td>
</tr>
<tr>
<td>Women</td>
<td>17532</td>
<td>54 (0.5)</td>
<td>243 1.54</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18–29</td>
<td>4075</td>
<td>15.31 (0.13) <.0001</td>
<td>42 1.31 <.0001</td>
</tr>
<tr>
<td>30–44</td>
<td>8607</td>
<td>28.51 (0.39) <.0001</td>
<td>82 2.7</td>
</tr>
<tr>
<td>45–64</td>
<td>9900</td>
<td>35.43 (0.43) <.0001</td>
<td>185 1.87</td>
</tr>
<tr>
<td>65+</td>
<td>7000</td>
<td>20.75 (0.02)</td>
<td>2 0.34</td>
</tr>
<tr>
<td>Race/ethnicity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH White</td>
<td>16866</td>
<td>71.77 (0.76) <.0001</td>
<td>315 2.18 <.0001</td>
</tr>
<tr>
<td>NH Black</td>
<td>5707</td>
<td>10.88 (0.39) <.0001</td>
<td>138 2.85</td>
</tr>
<tr>
<td>NH native American/AK native</td>
<td>460 2.04</td>
<td>7 2.21</td>
<td>10 2.69</td>
</tr>
<tr>
<td>NH Asian/Pacific Islander</td>
<td>886 4.28</td>
<td>4 0.25</td>
<td>12 1.43</td>
</tr>
<tr>
<td>Hispanic</td>
<td>5663</td>
<td>11.03 (0.57)</td>
<td>145 2.97</td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>16109</td>
<td>64.43 (0.55) <.0001</td>
<td>254 1.61 <.0001</td>
</tr>
<tr>
<td>Widowed, separated, divorced</td>
<td>5485 16.53</td>
<td>46 1.12</td>
<td>229 5.55</td>
</tr>
<tr>
<td>Never</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personal income</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$0–19,999</td>
<td>13482</td>
<td>43.21 (0.71 0.1275)</td>
<td>289 2.4 0.0008</td>
</tr>
<tr>
<td>$20–34,999</td>
<td>6928</td>
<td>23.28 (0.78)</td>
<td>139 2.46</td>
</tr>
<tr>
<td>$35–69,999</td>
<td>6664</td>
<td>23.69 (0.62)</td>
<td>148 2.27</td>
</tr>
<tr>
<td>$70,000+</td>
<td>2508</td>
<td>9.83 (0.72)</td>
<td>44 1.75</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than HS degree</td>
<td>5025</td>
<td>14.25 (0.7) <.0001</td>
<td>111 2.35 <.0001</td>
</tr>
<tr>
<td>High school degree</td>
<td>14425</td>
<td>49.48 (0.83)</td>
<td>335 2.54</td>
</tr>
<tr>
<td>More than HS</td>
<td>10132</td>
<td>36.27 (0.54)</td>
<td>174 2.01</td>
</tr>
</tbody>
</table>

Note: NH: non-Hispanic; AK: Alaska; HS: high school; PY: past year.

* Met criteria for past-year alcohol abuse and/or alcohol dependence.
that cannabis use among adults with no history of AUDs would be associated with greater risk of onset of an AUD three years later. It was also expected that cannabis use among adults with AUDs would be associated with greater risk of persistence of AUDs three years later. Further, the study explored whether the relationships between cannabis use and AUDs would persist after adjusting for demographics, psychiatric disorders, nicotine dependence, and other illicit drug use disorders.

2. Methods

2.1. Data source and study population

The study used two waves of data from the National Epidemiological Study of Alcohol Use and Related Disorders (NESARC; Wave 1, 2001–2001, n = 43,093; Wave 2, 2004–2005, n = 34,653) which surveyed a population representative sample of civilian, non-institutionalized, adults in the U.S. A two-wave multistage stratified design in which primary sampling units, housing units, and group-quarter units were stratified to oversample certain under-represented socio-demographic groups, specifically, non-Hispanic Black, Hispanic, and non-Hispanic White). The final data were weighted according to the demographic distribution of the U.S. population based on the 2000 census (Grant and Kaplan, 2005). Details regarding study design and administration have been described elsewhere (Grant et al., 2003).

2.2. Material and methods

2.2.1. Alcohol use disorders. AUD diagnoses were determined using the NIAAA Alcohol Use Disorder and Associated Disabilities Interview Schedule—Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) Version (AUDADIS-IV), a fully structured diagnostic interview instrument (Grant et al., 2001) with good to excellent reliability and validity (Grant et al., 1995). To preserve statistical power and be as consistent as possible with the criteria for substance use disorders in the DSM-5 (APA, 2013), participants who received diagnoses of either alcohol abuse or alcohol dependence were classified as having an AUD.

2.2.2. Cannabis use and use disorder. Diagnosis of a cannabis use disorder was based on meeting criteria for items covering the DSM-IV criteria for cannabis abuse or cannabis dependence (APA, 1994). Cannabis use disorder criteria included increased tolerance, compulsive use, impaired control, and continued use despite physical and psychological problems caused or exacerbated by use during the year prior to the Wave 1 interview. Cannabis use was defined as any use of cannabis in the year prior to Wave 1 that did not meet criteria for a cannabis use disorder.

2.2.3. Socio-demographic covariates and other potential confounders. Following previously established rationale (Miettinen and Cook, 1981), socio-demographic covariates included gender, age, level of education, race/ethnicity groups (Asian/Pacific Islander, non-Hispanic Black, Hispanic, Native American/Alaskan, and non-Hispanic White), marital status (married/living with someone as married, widowed, divorced/separated, single), and income. Gender, race/ethnicity, and marital status were discrete variables while age, education, and income were continuous variables.

A summary dichotomous variable was created to account for the presence of lifetime psychiatric disorders as measured at Wave 1, including major depression, manic depression, dysthymia, hypomania, panic disorder with/without agoraphobia, agoraphobia, social and specific phobia, generalized anxiety disorder, post-traumatic stress disorder, attention deficit-hyperactivity disorder, antisocial personality disorder, borderline personality disorder, and schizotypal or narcissistic personality disorder. Also, a dichotomous variable was created to adjust for any co-morbid DSM-IV substance use disorder including nicotine, sedatives, tranquilizers, opioids, heroin, amphetamines, cocaine, hallucinogens, inhalants/solvents, and other drugs.

2.3. Statistical analysis

2.3.1. Analytic samples. Our full analytic sample included respondents who completed both waves of data collection, responded to all questions regarding cannabis and alcohol, and for whom the age of first cannabis use preceded the age of any AUD (n = 29,582; 69% of the original Wave 1 sample). From this full analytic sample, two separate subsamples were created to address our study needs.
questions. To examine incident AUDs, the sample was restricted to respondents with no lifetime AUD diagnosis prior to the Wave 1 interview (n = 27,461; 93% of the full analytic sample). To examine persistent AUD, the sample was restricted to respondents with a lifetime AUD diagnosis at Wave 1 (n = 2,121; 7% of the full analytic sample).

2.3.2. Sample frequencies. The frequency of AUDs at Wave 2 was compared among those with and without Wave 1 cannabis use. Standard errors were computed using Taylor series linearization and frequency differences were tested using Rao Scott chi-squared tests to account for complex survey design. Due to the small number of participants who reported a Wave 1 cannabis use disorder (n = 42 for participants with no Wave 1 AUD diagnosis and n = 199 for participants with a Wave 1 AUD diagnosis), comparisons of Wave 2 AUD diagnoses by cannabis use disorder were not conducted.

2.3.3. Regression modeling. A series of logistic regression models were run to model the odds of Wave 1 cannabis use and Wave 2 AUD status. A crude model was run to determine the unadjusted odds ratio (OR) of an AUD by cannabis use status (labeled as OR1 in Table 2). Then, four additional models were run to control for potential confounders and covariates measured at Wave 1. The first adjusted model controlled for socio-demographic covariates (OR2). A second model adjusted for lifetime history of psychiatric disorders (OR3). The third model adjusted for lifetime nicotine dependence and other illicit drug use disorders (OR4), and the fourth model included all covariates from the three previous models (OR5).

All tests were completed in STATA using weighted analysis (StataCorp, 2011) to account for residual differences between the sample and the population profile, according to the 2000 United States Population Census, as well as to account for nonresponse and sample attrition.

3. Results

3.1. Socio-demographics (Table 1)

Among respondents with no lifetime AUD diagnosis at Wave 1 (n = 27,461), 27,301 respondents (99.3%) reported no cannabis use while 160 respondents (0.7%) reported cannabis use in the year prior to the Wave 1 assessment. Wave 1 past year cannabis use was significantly higher among respondents who were: men, age 18–44, Native American/Alaskan Native, never married, and those who had completed a high school education, compared with those who reported no cannabis use. There was no difference in cannabis use by income level. The prevalence of AUDs was highest among respondents who were men, age 18–29, Hispanic, never married, reported an income of less than 35,000, and completed high school.

Among respondents who reported a lifetime AUD diagnosis at Wave 1 (n = 2,121), 1705 respondents (78.4%) reported no cannabis use while 416 respondents (21.6%) reported cannabis use in the year prior to the Wave 1 assessment. Among those who reported a lifetime AUD diagnosis at Wave 1, Wave 1 past year cannabis use was significantly higher among respondents who were: men, age 18–29, Native American/Alaskan Native, never married, and those with less than a high school education and an income of $0–19,999, compared with those who did not use cannabis. The prevalence of AUDs followed the same general pattern as seen in cannabis use among this sample.

3.2. Wave 2 AUDs by Wave 1 cannabis use (Table 2)

Among those with no lifetime AUD at Wave 1, 23.3% of Wave 1 cannabis users reported a Wave 2 AUD compared to 5.3% of Wave 1 cannabis non-users. As shown in Table 2, Wave 1 respondents with no history of AUD at Wave 1 who reported Wave 1 cannabis users were 5.43 times more likely to report incident AUD compared to Wave 1 non-cannabis users (95% CI: 4.54–6.49). Wave 2 incident AUD was robust to adjustment in each of the separate and combined models. In the fully-adjusted model (OR5), Wave 1 cannabis users had a 2.12 times greater odds of incident AUDs compared to Wave 1 non-users (95% CI: 1.70–2.64).

Among those with lifetime AUDs at Wave 1, 59.1% of cannabis users reported a Wave 1 AUD compared to 45.4% of Wave 1 cannabis non-users. As shown in Table 2, among respondents with a lifetime diagnosis of an AUD at Wave 1, the unadjusted odds of a persistent AUD at Wave 2 were 1.74 times higher among cannabis users at Wave 1, compared with non-users at Wave 1 (95% CI: 1.56–1.95). The odds ratios were robust to adjustment by demographic covariates, Wave 1 lifetime psychiatric disorders, and Wave 1 lifetime nicotine dependence and other illicit drug use disorders. Estimates did not appreciably change when the co-morbid substance use disorder covariate was dichotomized by injectable (e.g., heroin, cocaine) and non-injectable (e.g., sedatives, hallucinogens) substances (data not shown). The fully adjusted odds of persistent AUD were 1.32 times higher among Wave 1 cannabis users, compared with non-users (95% CI: 1.17–1.50).

4. Discussion

The results from this study suggest a significant relationship between cannabis use and subsequent increased risk of AUDs for adults without a past AUD and risk of continued AUD for adults with an AUD. These relationships remain robust after controlling for demographics, psychiatric disorders, and other substance use disorders. From a public health standpoint, it may be important to conduct further research on the relationship between cannabis and AUDs as well as other problematic alcohol-related outcomes. From a clinical perspective, it may be useful for cannabis treatment programs to consider assessing and monitoring problematic alcohol use as well as integrating topics related to alcohol (e.g., reasons for use, methods to decrease or stop use) into their programs.

It is important to note limitations of this study. Use of alcohol, cannabis, and other drugs were self-reported and not biochemically confirmed which may have led to underreporting of substance use especially for illegal substances. Due to the small sample of participants who reported cannabis use, we were not able to reliably examine the associations between either the frequency of cannabis use or a cannabis use disorder diagnosis with AUDs. Future studies with larger samples of cannabis users should examine the association of frequency of cannabis use and a diagnosis of a cannabis use disorder to incident and persistent AUDs. Variables in the NESARC study were assessed at two time points and there was no information available regarding the timing or context of changes in cannabis or alcohol use behavior (e.g., the timing or context of the start of an AUD). It would be useful for future studies to examine contexts related to changes in the use of alcohol and cannabis and how changes in the use of cannabis (increases, decreases, initiation, and cessation) impacts changes in the use of alcohol. Finally, the NESARC study excluded individuals who were institutionalized, incarcerated, under the age of 18, or lived outside of the United States and results may not generalize to these groups.

In sum, our results suggest that cannabis use, compared to no cannabis use, is associated with increased risk of incident AUD among those without any history of AUD and an increased likelihood of persistence of AUD over a three-year period. Additional attention to alcohol use, alcohol use disorders, and alcohol-related problems among adults who use cannabis may be warranted.
Conflicts of interest

Dr. Weinberger, Mr. Platt, and Dr. Goodwin have no conflicts of interest to report.

Funding

Funding for this study was provided by the National Institutes of Health grant R01-DA20892 (to Dr. Goodwin). The NIH had no further role in study design; in the collection, analysis and interpretation of data; in the writing of the report; or in the decision to submit the paper for publication.

Contributors

Dr. Goodwin conceived of the study and wrote sections of the manuscript. Dr. Weinberger helped to design the study, managed the literature searches, and wrote the first draft of the manuscript. Mr. Platt contributed to study design and conducted the statistical analyses. All authors contributed to and approved the final manuscript.

Acknowledgment

The authors thank Sandra Rodgin for her work in obtaining articles for the literature review in this paper.

References

StataCorp, 2011. Stata Statistical Software: Release 12. StataCorp LP, College Station, TX.